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The improved AD1 method is used to solve the problem of wind-driven circulation in a 
rectangular cavity, and it is shown that the rate of convergence is not strongly dependent on 
the Reynolds number or the size of the mesh. Steady state solutions of vorticity and stream 
function are computed for four different values of the aspect ratio, and the results are 
described. Vertical profiles of horizontal velocity and its vertical curvature are also presented. 
Notable features of the results are the existence of physical differences between large and 
small aspect ratios and the suggestion of a symptom of transition from laminar to turbulent 
now. 

1. INTR~OUCTI~N 

Although the problem of wind-driven circulation in rectangular cavities is basic to 
the estimation of the energy transfer from wind to water, few works are to be found 
on this subject. The study of circulation induced by a constant shear stress at the 
water surface was theoretically presented by Hidaka [I] and numerically considered 
by Bye [2]. Bye discussed the behavior of the flow at both the upwind and the 
downwind ends, and showed the hydrodynamic instability of the stream lines at 
Reynolds numbers between 400 and 600, as he defined them. Furthermore, the 
problem of circulation in a rectangular cavity, induced by a parallel shear flow, was 
studied by Weiss and Florsheim [3], O’Brien [4], and Brandeis and Rom [5]. It is 
true that their line of approach is suitable for the problem of wind-driven circulation, 
but it is still difficult to use the appropriate matching method at the water surface. 

On the other hand, Kawaguchi [6] examined numerically the cavity flow problem 
in which the circulation was induced by a surface wall moving at a constant speed. 
After his work, a number of investigations of this type were made, and some of them 
were reviewed by Tuann and Olson [7]. The numerical techniques developed for the 
cavity flow problem are suitable for the problem of wind-driven circulation because 
the governing equations are of a similar type, except for the surface boundary con- 
ditions. 

The purpose of this paper is to solve numerically the steady state problem of wind- 
driven circulation originally proposed by Hidaka [ 1 ] using the improved AD1 
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WIND-DRIVEN CIRCULATION IN CAVITIES 131 

method. The numerical simulation of circulation induced by a constant vorticity at 
the water surface is employed. Note that this model is slightly different from the 
ordinal cavity model mentioned above. Of special concern is examining how the 
pattern of circulation in rectangular cavities changes with Reynolds number and 
aspect ratio. 

2. MATHEMATICAL FORMULATION OF WIND-DRIVEN CIRCULATION 

Let us consider a two-dimensional rectangular cavity of height H and width L, in 
which water of constant density p and viscosity ,u is set into motion by a steady 
homogeneous wind blowing over the water surface. The x-axis is taken along the 
bottom of the cavity and the y-axis vertically, the origin being taken at the bottom 
left-hand corner as shown in Fig. 1. After a sufficient time, the flow of water in the 
cavity should reach a steady state balance with constant tangential wind stress at the 
water surface. Since without wind there exists no flow of water in the cavity, this 
circulation must be characterized by the friction velocity, u*, of air. 

Now let the governing equations be dimensionless with the horizontal length L and 
the friction velocity U* ; then, 

J(w C) = (l/Re) V*C, (1) 

v2ty = -c, (2) 

l/=0 along all boundaries, (3) 

aw 0 
ax= 

along vertical walls, (4) 

a?0 ay- along a bottom wall, 

C= @hP along a water surface, 

J=NL 

J= I 
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where J is the Jacobian, V2 = (a’/&‘) + (a2/ay2); v is the stream function; c is the 
vorticity, pa is the density of air, and Re is the Reynolds number defined as 

Re = pu,L/p. (7) 

Using the surface velocity u, at the midpoint of the cavity, Re can be connected with 
Reynolds number ReB defined by Bye [2] as 

ReB = pu,H/p = AR(u,/u,) Re, (8) 

and AR is the aspect ratio defined as, 

AR = H/L, (9) 

where L is the horizontal scale of the cavity and H the vertical one. 
As we are concerned with just a steady state solution, Eqs. (1) and (2) may be 

rewritten as a Cauchy-Kovaleska equation, i.e., 

wwhere E is a parameter used to enhance the transient convergence. 

3. FINITE DIFFERENCE EQUATIONS 

In order to construct finite difference analogues of Eqs. (10) and (1 l), the ADI 
method originally proposed by Peaceman and Rachford [8] is used herein. According 
to Pearson [9], Eqs. (10) and (11) may be approximated by 

Cy,f II2 - l:, j = E 1 
At/2 

I - [  
n Re 

ry,t:ii’ + ry:jj - 21;F.J ‘I2 + gj+, + r;,j-, - 2gj 

W2 (Ay12 1 
+ (1/4AxAY)(C5+ 1 -r~,j-I)(Wl+l,j- We-,,j) 

- (~/~AxAY)(C~~:~ - t;~T~(,‘)(W~,j+ I- YJy,j- 1) 
I 

5 (12) 

+ (1/4AxAY)(C;,f: I - I;;,;’ I>(‘&+ 1.j - WE 1.j) 

- (1/4Ax Ay)(&,+$ - Cl':/j'>CWY,j+ 1 - WY,j- 1) 
I 

3 (13) 
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w y,f “* - WY,j = --E v/;$? + &:jj’ - 2l& I/* 

At/2 ’ (Ax)* 

+ Wy,j+ 1 + WY,,-1 - 2WY,j 

CAY)* 
+ rr;,:’ 3 1 w;,f ’ - v/y,; I’* 

At/2 = -’ [ 
I//;,‘;/; + l&y? - 2w;,; ‘/* 

(Ax)* 

Eq. (12) can be rewritten as, 

(14) 

(15) 

(16) 

where 

A:= (l/Re(Ax)*)- (1/4AXAY)(Yly,j+, - Wy,j-l>, 

B” = 2/tz,At + 2/Re(Ax)*, 

Ct = (l/Re(Ax)*) + (1/4AX AY)(Wy,j+ 1 - Wy,j- I>, 

0: = K1/W&)*) + (~/~AxAY)(v;+ 1.j - WY- l,j>I &+ I 
+ [(l/Re(Ay)*) - (~/~AxAY)(vI+ 1.j - WY- l.j>I C?,j- 1 

2 2 
+ ~- 

c,At Re(Ay)* 1 
Cy,j* 

Equations (13~( 15) may also be reduced to the same form as Eq. (16). A way to 
solve equations of this type can be seen in Roache [lo]. 

The boundary conditions of Eqs. (3~(6) are discretized to the second order, say, 

Wl,j= v/ML.j= vi.1 = V/i,NL=OY (17) 

C1.j = (3W2,j/(AX>*> - fC2,j, (18) 

CML,j = (3VML-l,j/(AX)*) - dCrvt,- 1.j’ (19) 

C.1 = (Wi,2/kV)2) - iCi.29 (20) 

Ci,NL. = @,/PI Re, (21) 

where ML and NL correspond to the numbers of horizontal and vertical mesh points 
as shown in Fig. 1. 

In Eqs. (12~(15), the parameter E, can be changed every iteration, because the 
AD1 method is unconditionally stable at any time step. As stated by Roache [lo], it 
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is not easy to determine an optimum parameter of E,, so we use the method 
introduced by Miyakoda [ Ill, say, 

P, = 2/Ats, = YX”- I, (22) 

where X and Y are the arbitrary values restricted by 0 < X < 1 and 0 < Y, and those 
values used in this computation are tabulated in Table I. 

As the number of iterations increases, however, P, diminishes, and there is a 
possibility that the iteration may be terminated before the following criterion of 
convergence is satisfied: 

Kf” --fn-l)lf~axlmax < lo-6, (23) 

where f represents either vorticity (’ or stream function w. To avoid this possibility, we 
introduce a second criterion, 

P, > 10-4. (24) 

This means that the time step changes within the limited interval. If P, becomes less 
than 10e4, P, reverts back to P,, and the iteration is then repeated. Birkhoff et 
al. [ 12 ] showed that if the repetition of the iteration parameters is used, the number 

TABLE I 

Numerical Conditions 

Aspect ratio Reynolds number 

AR Re ReB 

Iteration parameters0 

X Y 

1.0 100 1.735 0.5 1.0 
400 26.68 0.5 1.0 

1000 112.9 0.5 1.0 
2000 300.0 0.5 1.0 

0.5 100 0.711 0.5 1.0 
400 11.12 0.5 1.0 

1000 52.20 0.5 1.0 
2000 135.8 0.8 1.0 

0.1 

0.05 

100 0.033 0.5 1.0 
1000 3.249 0.5 1.0 
2000 13.00 0.5 1.0 
4500 60.12 0.5 1.0 

100 0.001 0.5 1.0 
1000 0.809 0.5 1.0 
5000 20.27 0.5 1.0 

10000 76.15 0.5 1.0 

a See Eq. (22). 
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of iterations does not strongly depend on the size of the mesh. The combination of the 
criteria represented by Eqs. (23) and (24) is the improved point of this numerical 
model. 

The finite difference equations, including the boundary conditions, used in this 
paper all have second-order accuracy. We sometimes fail, however, to obtain the 
convergence because of the nonlinearity of Eqs. (12) and (13). This problem may be 
resolved by changing the combination of the values of X and Y in Eq. (22). The 
numerical conditions used herein are tabulated in Table I. 

Now let’ us list the steps in the computational procedure. 

(1) Assume that the initial values of { and w  at the required mesh point are 
zero. 

(2) Set boundary values of [ and w  with Eqs. (17)-(21). 

(3) Solve Eqs. (12) and (13) to give r+‘. 

(4) Using the values of r+‘, solve Eqs. (14) and (15) to give I$‘+‘. 

(5) Repeat step (2) iteratively until the convergence criterion of Eq. (23) is 
satisfied for both [ and w. 

(6) Calculate horizontal velocity with the following equation: 

ui,j= (Vi,j+l - Vi,j-l)/2dY for j=2, NL- 1, 

ui,, = 0. 

The surface horizontal velocity is estimated as follows: 

Ui,NL = -Wi,NL--l/dy + (dY/3)(ci,NL + fci.NL-1)’ 

All these are also correct to the second order in dy. All calculations are carried out 
on a 41 x 41 mesh, and P, is changed at each iteration under the restriction of 
Eq. (24). 

4. NUMERICAL RESULTS AND DISCUSSION 

With a constant vorticity source at the water surface as shown in Fig. 1, a counter- 
clockwise vortex is induced in the rectangular cavity as shown in Fig. 2. Note that all 
cases are shown to the same scale, regardless of the different aspect ratios used. 

The most notable feature of the AD1 method compared with the SOR method (for 
example, Takematsu [ 131) is that the number of iterations for convergence only 
increases slowly as the Reynolds number is increased, as seen in Fig. 2. All results 
demonstrated herein are obtained on a 41 x 4 1 mesh, but we also tried a few cases 
for AR = 1.0 on a 2 1 x 21 mesh in order to examine the dependence of the rate of 
convergence on the mesh size for this numerical method. These results are shown in 
Table II, and it is found that the rate of convergence of the AD1 method is not 
strongly influenced by the size of the mesh. 
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TABLE II 

Dependence of the Rate of Convergence on the Mesh Size at AR = 1.0 

Reynolds number 
Re 

Number of iterations 

21 x 21 mesh 41 x 41 mesh 

100 135 210 
400 150 195 

1000 270 300 

Now let us discuss the numerical results. First of all, it is readily found from 
Figs. 2a-d that the contours of vorticity become asymmetrical as the Reynolds 
number is increased. The same tendency can be seen in the contours of stream lines. 
The behavior of vorticity and stream lines at AR = 1.0 in Fig. 2a is very similar to 
that of the cavity problem discussed by Burggraf [ 141. The circulation tends to close 
to the downwind end of the cavity as the Reynolds number is increased. This means 
that the inertia terms are becoming more dominant. This effect was originally studied 
by Hidaka [ 11. 

Next, as shown in Figs. 2a and b, for both AR = 1.0 and AR = 0.5, it is found 
that there exist secondary eddies at both the bottom corners, except for the case of 
Re = 1000 at AR = 0.5. Although it is difftcult to explain the reason for this 
exception at AR = 0.5, the general tendency seems to be consistent with the results 
on the cavity flow problem. On the other hand, from Figs. 2c and d, only one 
secondary eddy can be seen, at the bottom right-hand corner, in the cases of 
AR = 0.1 and AR = 0.05. These facts imply that there is a physical difference 
between the case of AR = 1.0 and AR = 0.5 and the case of AR = 0.1 or AR = 0.05. 

Third, it should be noted that the Reynolds number increases as the aspect ratio 
decreases. For example, although the maximum Reynolds number at AR = 1.0 is 
2000 in Fig. 2a, it is 10,000 at AR = 0.05, as seen in Fig. 2d. This means that wind- 
driven circulation tends to be more stable at a small aspect ratio than at a large one. 
In other words, a smaller aspect ratio requires a larger Reynolds number to obtain 
the same order of velocity. This discussion of a larger aspect ratio than AR = 1.0 was 
presented by O’Brien [4]. 

Fourth, according to the experimental results of Keulegan [ 151, a transition from 
laminar to turbulent flow may happen between ReB values of 400 and 1000. These 
values are much less than those of the cavity flow problem experimentally reported 
by Mills [ 161 and Pan and Acrivos [ 171. This fact shows that wind-driven 
circulation become unstable at a rather smaller Reynolds number than does the 

FIG. 3 The vertical profiles of horizontal velocity ui,j for AR = 1.0 and AR = 0.5. 
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cavity flow problem. Bye [2] demonstrated numerically that the transition from 
laminar to turbulent flow happens betweenReB values of 400 and 600. In fact, it is 
very difficult to predict the transient Reynolds number from laminar to turbulent flow 
in a numerical method for the steady-state problem. Approaching the transitional 
state, the numerical solutions may oscillate as mentioned by Bye [2]. The vertical 
profiles of horizontal velocity for AR = 1.0 and AR = 0.5 are shown in Fig. 3. It is 
found that the profiles for Re = 2000 at both aspect ratios (which are indicated by X) 
are slightly bent. As seen in Table I, these Reynolds numbers correspond to 
ReB = 300 and Re’ = 135.8, respectively. If this kind of variation has some 
connection with transition from laminar to turbulent flow, it may appear at a 
Reynolds number rather lower than the value mentioned above. We have, however, 
little conviction regarding this symptom. It should be certified by wind-tunnel 
experiments in the future. A similar tendency is observed to occur in a cavity flow 
problem (for example, Leonard [ 181). 

Lastly, the vertical curvature of horizontal velocity for AR = 1.0 and AR = 0.5 is 
plotted in Fig. 4, where the curvature is calculated as follows: 

Ui’,j= (Ui,j+l + Ui,j-1 - 2ui,j)/(d.Y)2* (25) 

Using Eq. (25), the values of the curvature at the bottom and top of the cavity are not 
obtainable. Consider just a line of Z = 21, where the influence of vertical velocity is 
less. The profile of curvature can be divided into two regions, the upper region of 
large value of curvature and the lower region of nearly constant value of curvature. In 
the upper region, it should be noted that the curvature decreases sharply at Reynolds 
numbers under Re = 1000 very near the water surface. This may indicate the 
existence of a viscous surface sub-layer, because the vertical profile of horizontal 
velocity is linear with depth and the curvature is zero in the viscous sub-layer. As the 
Reynolds number is increased, the viscous sub-layer disappears and the profile of 
curvature becomes continuous near the water surface as the result of the nonlinearity 
seen in Re = 2000 at AR = 1.0. This fact may be connected with the variation of the 
vertical profile of horizontal velocity. In the lower region, the vertical profiles of 
curvature seem to be constant. They look to be zero but are not exactly zero. This 
means that the vertical profiles of horizontal velocity in this region are close to being 
parabolic. 

5. CONCLUSION 

Let us summarize the results discussed in the previous section. 

1. The improved AD1 method in this paper, has a good rate of convergence to 
a steady state solution. This rate of convergence is not strongly dependent on the 
Reynolds number of the size of the mesh. 

FIG. 4 The vertical profiles of the curvature of horizontal velocity u;tj for AR = 1.0 and AR = 0.5. 
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2. As the Reynolds number is increased, the effect of the inertia terms becomes 
more dominant. Comparing the flow patterns at the different aspect ratios, there are 
some apparent differences between large and small aspect ratio. There exist two 
secondary eddies at large aspect ratio but only one at small aspect ratio. 
Furthermore, it is found that wind-driven circulation tends to be more stable at a 
small aspect than at a large one. 

3. It is found that the vertical profiles of horizontal velocity bend in the cases 
Re = 2000 at AR = 1.0 and AR = 0.5. This may be a symptom of transition from 
laminar to turbulent flow. In connection with this, there seems to be a viscous sub- 
layer near the water surface when the Reynolds number is low. As the Reynolds 
number is increased, this sub-layer tends to disappear. 

APPENDIX 

J Jacobian 
w stream function 
< vorticity 

V* Laplacian 
p density of water 

p, density of air 
u* friction velocity of air 
u, surface velocity at the midpoint of a cavity 

Re Reynolds number defined in this paper 
Res Reynolds number defined by Bye 121 

p viscosity of water 
L horizontal scale of a cavity 
H vertical scale of a cavity 

AR aspect ratio 
-5 E, parameter for convergence 

dx horizontal size of mesh 
Ay vertical size of mesh 
At time interval 
P, parameter defined as P, = 2/c, At 
X variable with the limitation of 0 < Xg 1 
Y variable with the limitation of 0 < Y 
u horizontal velocity 

u” vertical curvature of horizontal velocity 
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